The Reaction of 2-Ethoxy-1,3-oxathiolane with Carbonyl Compounds in the Presence of ZnCl₂ or HgCl₂

Shigeo Tanimoto,* Shigeo Jo,* Toyonari Sugimoto, and Masaya Okano
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611
(Received February 21, 1981)

Synopsis. In the reaction of 2-ethoxy-1,3-oxathiolane with carbonyl compounds in the presence of $ZnCl_2$ or $HgCl_2$, it has been found that only the breaking of the endocyclic bond (C–O or C–S bond) occurs, while the breaking of the exocyclic C–O bond to give the 1,3-oxathiolan-2-ium ion is unfavorable. This behavior is different from that of 2-ethoxy-1,3-dithiolane, in which the breaking of the endocyclic C–S bond occurs by means of $HgCl_2$ and the exocyclic C–O bond, by means of $ZnCl_2$.

It has already been shown¹⁾ that the reaction of 2-ethoxy-1,3-dithiolane with acetone in the presence of HgCl₂ gives exclusively 2,2-dimethyl-1,3-dithiolane (1), whereas the employment of ZnCl₂, under otherwise identical conditions, yields 1-(1,3-dithiolan-2-yl)-2-propanone (2), along with 1. The pathway leading to 1 involves the C-S bond fission of 2-ethoxy-1,3-dithiolane, and the breaking of the exocyclic C-O bond to give the 1,3-dithiolan-2-ium ion is necessary for the formation of 2.

This report will describe the somewhat different behavior of 2-ethoxy-1,3-oxathiolane, in which these Lewis acids cause only the breaking of the endocyclic bond, with no evidence of the formation of the 1,3oxathiolan-2-ium ion.

When 2-ethoxy-1,3-oxathiolane was allowed to react with aldehydes or ketones in dichloromethane at room temperature, in the presence of ZnCl₂, the corresponding 2-substituted or 2,2-disubstituted 1,3-oxathiolane (3)

Table 1. Reaction of 2-ethoxy-1,3-oxathiolane with aldehydes or ketones
2-Ethoxy-1,3-oxathiolane, 20 mmol; Aldehyde or ketone, 20 mmol; ZnCl₂ or HgCl₂, 4 mmol; Dichloromethane, 35 ml. Reaction conditions: room tem-

perature, 16 h.

Aldehyde or ketone		Catalant	Prod at / 11/0/	
R	R'	Catalyst	Product (yield/%)	
C ₆ H ₅	Н	ZnCl ₂	3a ^{a)} (60), C ₆ H ₅ CH(SCH ₂ CH ₂ OCHO) ₂ ^{b)} (14)	
C_6H_5	H	$HgCl_2$	3a ^{a)} (74), C ₆ H ₅ CH(SCH ₂ CH ₂ OCHO) ₂ ^{b)} (4)	
$CH_3(CH_2)_2$	H	ZnCl ₂	3bc) (53), CH ₃ (CH ₂) ₂ CH(SCH ₂ CH ₂ OCHO) ₂ d) (12)	
$CH_3(CH_2)_2$	Н	$HgCl_2$	3b ^{e)} (72), CH ₃ (CH ₂) ₂ CH(SCH ₂ CH ₂ OCHO) ₂ ^{d)} (4)	
-(CH ₂) ₅ -		$ZnCl_2$	3c° (82), SCH ₂ CH ₂ OCHO (3)	
$-(CH_2)_5-$		HgCl ₂	3c°) (92)	
CH ₃	CH ₃	HgCl ₂	3d ^{g)} (72)	
C_6H_5	CH ₃	$ZnCl_2$	3eh) (43)	
C_6H_5	CH ₃	HgCl ₂	3eh) (42)	
C ₆ H ₅ CH=CH	H	$HgCl_2$	3f ¹⁾ (39)	

was produced as the main product in all cases.

$$\begin{array}{c} \overset{O}{\underset{S}{\subset}} CH\text{-}OC_2H_5 + O = \overset{R}{\underset{R'}{\subset}} & \overset{ZnCl_2 \text{ or } HgCl_2}{\xrightarrow{C}} & \overset{O}{\underset{C}{\subset}} \overset{R}{\underset{C}{\subset}} \\ & \overset{C}{\underset{S}{\subset}} & \overset{R}{\underset{R'}{\subset}} \\ \textbf{a}: R = C_6H_5, \ R' = H & \textbf{d}: R = R' = CH_3 \\ \textbf{b}: R = CH_3(CH_2)_2, \ R' = H & \textbf{e}: R = C_6H_5, \ R' = CH_3 \\ \textbf{c}: R, \ R' = -(CH_2)_5 - & \textbf{f}: R = C_6H_5CH = CH, \ R' = H \end{array}$$

From the previously known data¹⁾ it seems reasonable to propose that the coordination of the O atom in the ring with ZnCl₂ occurs preferentially, thus bringing about the formation of the resonance-stabilized thio-carbonium ion. The employment of HgCl₂ instead of ZnCl₂, under otherwise identical conditions, also yielded 3. This may be also explained in terms of another path involving the intial coordination of the S atom with HgCl₂ and the subsequent formation of the resonance-stabilized oxycarbonium ion.

Ethyl acetoacetate, methyl acetoacetate, or acetylacetone was also used for the reaction with 2-ethoxy-1,3-oxathiolane in the presence of ZnCl₂ or HgCl₂. The reaction proceeded without a solvent at room temperature, and 1,3-oxathiolane derivatives of the **4** formula were isolated.

The only product obtained was 4; the remainder consisted of unchanged starting materials containing some resinous matter. Even in runs in which ZnCl₂

Table 2. Reaction of 2-ethoxy-1,3-oxathiolane with some active methylene compounds 2-Ethoxy-1,3-oxathiolane, 45 mmol; Active methylene compound, 30 mmol; Lewis acid catalyst: described in individual cases. Reaction conditions: room temperature, 24 h.

	nethylene oound	Catalyst	Product	
\widetilde{R}	$\widetilde{\mathbf{R}'}$	(mmol)	(yield/%)	
CH ₃	OC_2H_5	ZnCl ₂ (7)	4a ^{a)} (37)	
CH_3	OC_2H_5	$HgCl_2(11)$	4a a) (9)	
CH_3	OC_2H_5	$FeCl_3(6)$	4a ^{a)} (44)	
CH_3	OCH_3	$ZnCl_2(7)$	4b ^{b)} (66)	
CH_3	CH_3	$ZnCl_2(7)$	4c ^{c)} (28)	

a) Bp 131—134 °C/25.5 Torr (lit,⁴⁾ 117 °C/20 Torr). NMR (CDCl₃): δ 4.17 (t, 2H), 4.13 (q, 2H), 3.06 (t, 2H), 2.87 (bs, 2H), 1.72 (s, 3H), 1.25 (t, 3H). b) Bp 82—83 °C/3 Torr. NMR (CCl₄): δ 3.98 (t, 2H), 3.53 (s, 3H), 2.92 (t, 2H), 2.70 (s, 2H), 1.62 (s, 3H). c) Bp 74—77 °C/2.5 Torr. NMR (CCl₄): δ 3.94 (t, 2H), 2.88 (t, 2H), 2.81 (s, 2H), 2.02 (s, 3H), 1.51 (s, 3H).

Table 3. Reaction of 2-ethoxy-1,3-dithiolane with some active methylene compounds using the $HgCl_2$ catalyst

2-Ethoxy-1,3-dithiolane, 33 mmol; Active methylene compound, 38 mmol; HgCl₂ (or HgBr₂) catalyst, 15 mmol. Reaction conditions: room temperature, 24 h.

Active methylene compound		Catalyst	Product (yield/%)
R	R		
			5a a) (35), SCH-CH COCH ₃ a) (5)
CH ₃	OC_2H_5	$HgBr_2$	5a a) (36),
CH_3	OCH ₃	HgCl_2	5b ^{a)} (37),
			5c ^{b)} (35),
			5d ^{a)} (30),
$-(\mathrm{CH_2})_3 -$			c
Diacetyl		HgCl_2	

a) The data of these compounds can be seen in the literature.⁵⁾ b) Bp 163—165 °C/2 Torr. NMR $(CDCl_3): \delta 7.8-7.2 \text{ (m, 5H)}, 3.93 \text{ (q, 2H)}, 3.46$ (s, 2H), 3.28 (s, 4H), 1.01 (t, 3H). c) Dichloromethane was used as the reaction solvent. d) Bp 134—136 °C/2 Torr (lit,6) 130—136 °C/0.6 Torr). NMR (CDCl₃): δ 3.30 (s, 4H), 2.87 (bs, 2H), 2.5—1.9 (m, 6H). e) After the evaporation of 5e from the crude product, the residue was columnchromatographied on silica gel, using 20% etherhexane as the eluent, to afford this product. Mp 155—156 °C (ethanol) (lit, 7) 158—158.5 °C). NMR (CDCl₃): δ 3.28 (s, 8H), 2.71 (bs, 2H), 2.1—1.8 (m, 6H). f) Bp 82—84 °C/2 Torr. NMR (CDCl₃): δ 3.43 (bs, 4H), 2.39 (s, 3H), 1.81 (s, 3H). g) Mp 83—84 °C (ethanol) (lit, 8) 83 °C). NMR (CDCl₃): δ 3.5-3.3 (m, 8H), 2.03 (s, 6H).

was employed, none of the product which would arise from the intermediate 1,3-oxathiolan-2-ium ion was detected. On the other hand, in our previous work⁵⁾ on the reaction of 2-ethoxy-1,3-dithiolane with active methylene compounds in the presence of ZnCl₂, the exclusive formation of the intermediate 1,3-dithiolan-2-ium ion was observed. When HgCl₂ was used instead of ZnCl₂, the reaction with the dithiolane proceeded *via* a resonance-stabilized thiocarbonium ion. The formation of 1,3-dithiolane derivatives with the formula of 5 in

this reaction suggests that the coordination of HgCl₂ with the S atom in the 1,3-dithiolane ring is favorable. The products obtained in the reaction are summarized in Table 3.

$$\begin{pmatrix}
S \\
CH-OC_2H_5 + CH_2
\end{pmatrix}
\xrightarrow{COR'}
\xrightarrow{HgCl_3}
\begin{pmatrix}
S \\
C
\end{pmatrix}
\xrightarrow{R}$$

$$S \\
CH_2COR'$$

$$5$$

$$a: R=CH_3, R'=OC_2H_5 \quad d: R=R'=CH_3$$

$$b: R=CH_3, R'=OCH_3 \quad e: R, R'=-(CH_2)_3-C$$

$$c: R=C_6H_5, R'=OC_2H_5$$

Experimental

Reaction of 2-Ethoxy-1,3-oxathiolane with Aldehydes or Ketones. To a mixture of 2-ethoxy-1,3-oxathiolane (20 mmol) and an aldehyde (or a ketone) (20 mmol) in dichloromethane (35 ml), we added HgCl₂ (or ZnCl₂) (4 mmol) at 0—5 °C. The mixture was stirred for 16 h at room temperature and then poured into a mixture of water and dichloromethane. The organic layer was separated, and then it was combined with a dichloromethane extract of the aqueous phase. The dichloromethane solution was washed with dilute aqueous NaHCO₃, and then with water, dried over MgSO₄, and distilled.

Reaction of 2-Ethoxy-1,3-oxathiolane with Active Methylene Compoundes. To a mixture of 2-ethoxy-1,3-oxathiolane (45 mmol) and an active methylene compound (30 mmol), we added a Lewis-acid catalyst (as is shown in Table 2) at 0—5 °C. The mixture was stirred for 24 h at room temperature and then worked up as above.

Reaction of 2-Ethoxy-1,3-dithiolane with Active Methylene Compounds in the Presence of HgCl₂. To a mixture of 2-ethoxy-1,3-dithiolane (33 mmol) and an active methylene compound (38 mmol), we added HgCl₂ (or HgBr₂) (15 mmol) at 0—5 °C. The mixture was stirred for 24 h at room temperature and then poured into a mixture of ice water and ether. The organic layer was separated and combined with an ethereal extract of the aqueous phase. The ethereal solution was washed with dilute aqueous NaHCO₃, and then with water, dried over MgSO₄, and distilled. The product was further purified by column chromatography on silica gel, if necessary (the eluent in most cases was 50% hexane-ether).

References

- 1) S. Jo, S. Tanimoto, T. Oida, and M. Okano, Bull. Chem. Soc. Jpn., in press.
- 2) F. Kipnis and J. Ornfelt, J. Am. Chem. Soc., 71, 3555 (1949).
- 3) B. E. Leggetter and R. K. Brown, Can. J. Chem., 41, 2671 (1963).
- 4) C. Djerassi and M. Gorman, J. Am. Chem. Soc., 75, 3704 (1953).
- 5) S. Tanimoto, Y. Matsumura, T. Sugimoto, and M. Okano, Bull. Chem. Soc. Jpn., 51, 665 (1978).
 - 6) M. P. Mertes, J. Org. Chem., 26, 5236 (1961).
- 7) E. E. Smissman and J. L. Diebold, J. Org. Chem., 33, 1466 (1968).
- 8) F. Chastrette, M. Hassambay, and M. Chastrette, Bull. Soc. Chim. Fr., 1976, 601.